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Abstract. Reducing methane emissions from human activities is essential to tackle climate change. To monitor these emissions,

we rely on satellite observations, which enable regular, global-scale tracking. Methane emissions are typically quantified by

their source rate – the mass of gas emitted per unit of time. Our goal here is to estimate the emission source rate of methane

plumes detected by hyperspectral imagers such as PRISMA or EnMAP. For this task, we generated a large synthetic dataset

using Large Eddy Simulations (LES) to train a deep learning model. This dataset was specifically designed to avoid network5

overfitting with careful plume temporal sampling and plume scaling. Our deep learning network, MetFluxNet, does not require

any wind information or a plume mask. Moreover, it accurately predicts the source rate even in the presence of false positives.

MetFluxNet performs well on our dataset with a mean absolute percentage error (MAPE) of 8.3% across a wide range of

source rates from 500 kg h−1 to 25000 kg h−1. Notably, it remains effective at lower source rates, where background noise is

typically high. To validate its real-world applicability, we tested MetFluxNet on real plumes with known ground truth fluxes.10

The predicted source rates systematically fell within the 95% confidence intervals, demonstrating its reliability for real-world

plume estimation. Finally, in a comparison with recent state-of-the-art methods, MetFluxNet outperformed the deep learning-

based S2MetNet and the physics-based Integrated Mass Enhancement (IME) method.

1 Introduction

The global warming potential of a methane (CH4) molecule is 80 times larger than the global warming potential of carbon15

dioxide (CO2) over a 20 year period. Thus, the reduction of methane emissions from human activities comes as an effective

strategy to curb climate change. About a third of CH4 emissions linked to human activities comes from oil and gas infrastruc-

tures (Jacob et al., 2016). Hence, a substantial part of human CH4 emissions could be controlled or reduced. Here, we focus on

point source methane emissions. This designates plumes containing a large amount of CH4 but coming from a small ground

surface. To monitor methane emissions from anthropogenic activities, multiple satellites have been launched into Earth’s orbit20

over the past decades, enabling global-scale monitoring.

Monitoring atmospheric methane concentrations with satellite imagery started in the early 2000s with the SCIAMACHY

instrument (Frankenberg et al., 2005) onboard ENVISAT. The low spatial resolution of 30× 60 km2 permitted a global scale
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analysis, but not the detection of localized emissions. The use of high-resolution hyperspectral satellites to detect methane

point source emissions began in 2016 with the work of Thompson et al. (2016) on Hyperion, followed by GHGsat (Jervis25

et al., 2021). Techniques for detecting methane plumes were also developed in AVIRIS airborne campaigns. These campaigns

made it possible to continue to develop existing atmospheric inversion methods (Thorpe et al., 2013), as well as using new

methods such as the matched filter (Thompson et al., 2015) and its variants (Funk et al., 2001; Theiler, 2021). The study of

methane plumes has also been extended to multispectral instruments such as Sentinel-2 (Ehret et al., 2021) and WorldView-

3 (Sánchez-García et al., 2022). Recently, a new generation of hyperspectral imagers including PRISMA (Cogliati et al., 2021)30

and EnMAP (Guanter et al., 2015) have also proved their ability to monitor point source emissions (Guanter et al., 2021; Roger

et al., 2024).

Here, we address the task of estimating the emission source rate for methane plumes detected by high-resolution hyperspec-

tral sensors such as PRISMA and EnMAP. Several methods have been designed to estimate the emission source rate from a sin-

gle plume observation, such as the cross-sectional flux (Varon et al., 2018; Jacob et al., 2022) or the angular width method (Jon-35

garamrungruang et al., 2019). One of the most popular methods is the Integrated Mass Enhancement (IME) (Frankenberg et al.,

2016; Varon et al., 2018), which is in particular used to estimate the methane source rate for plumes in PRISMA and EnMAP

images (Guanter et al., 2021; Roger et al., 2024). However, these methods often have a high error rate and rely on external

data, such as wind speed, which can introduce up to 50% uncertainty (Varon et al., 2018).

In recent years, methods using deep learning and in particular convolutional neural networks (CNNs) have been used for40

source rate estimation (Jongaramrungruang, 2021). Convolutional neural networks capture the spatial features of the plume

and the amount of gas at the same time. The spatial features of the plume are particularly relevant for this problem, as they are

correlated with the wind speed (Jongaramrungruang et al., 2019). Wind speed is a crucial component for source rate estimation

because it characterizes the diffusion speed of the plume. The most common CNN architectures for source rate estimation are

the classic U-Net (Bruno et al., 2024) or ResNet (Radman et al., 2023). This allows using pre-trained networks with weights45

learned on other datasets which do not necessarily contain satellite images. The weights learned from datasets such as ImageNet

have proven useful for satellite images (Radman et al., 2023). All of these networks take as input a methane concentration map

retrieved from a hyperspectral or multispectral image. Different methods are used to obtain this concentration map depending

on the type of sensor. Some of the most used retrieval techniques are the matched filter (Theiler and Wohlberg, 2013) for hyper-

spectral images (Guanter et al., 2021; Roger et al., 2024) and the multi-band–multi-pass (Varon et al., 2021) for multispectral50

images (Radman et al., 2023). Training deep neural networks requires large datasets. However, real plume datasets with known

source rates are extremely rare, limited to a few specific sensors, and typically very small. Hence, it is common practice to train

and test networks on simulated plumes produced with Large Eddy Simulations (LES) (Varon et al., 2021).

Here, we aim at developing a deep learning technique to estimate the emission rate of point source methane plumes detected

by PRISMA and EnMAP. Firstly, we present a new dataset of simulated methane plumes produced with LES. These plumes55

are then inserted in real EnMAP images to obtain a dataset with real background noise. Next, we detail the procedure used

to retrieve the methane concentration. Then, we present the different architectures we tested on different training sets and test

sets. Lastly, we present experiments comparing our method with the state-of-the-art IME and with other deep learning methods.
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The experiments were performed not only on our simulated data, but also on a dataset simulated by Varon et al. (2021), and

finally on real plumes with ground truth obtained in controlled methane release experiments (Sherwin et al., 2023b, a). This60

comparison allows us to verify the generalization capabilities of our model.

2 Materials

2.1 Hyperspectral data

The method presented here is designed for high resolution hyperspectral satellites. The images we work with are Level 1 (L1)

images from PRISMA (Cogliati et al., 2021) and EnMAP (Guanter et al., 2015). Both of these satellites provide hyperspectral65

images with a spatial resolution of 30 m. Methane absorption bands are located inside the 1500−2450 nm range, in the Short-

Wave InfraRed (SWIR). This range is covered by the spectral channels of both PRISMA and EnMAP. In the SWIR, the spectral

resolution of PRISMA varies between 9 nm and 15 nm and the spectral resolution of EnMAP is approximately 10 nm.

The deep learning models presented here were trained on simulated plumes. To train our networks, we inserted those plumes

in true EnMAP L1 images to reproduce plumes with real background noise. We used 48 background samples from different70

locations in North America, Middle East and North of Africa. Those three areas are places where methane plumes are frequently

detected with PRISMA and EnMAP (Guanter et al., 2021; Roger et al., 2024) and will therefore allow us to recreate real

conditions as much as possible.

2.2 Large Eddy Simulations

Training a deep learning model requires a large amount of data. One of the main constraints in source rate estimation from75

satellite imagery is the lack of ground truth, which prevents us from using a dataset of real images. Therefore, we used our real

plume images for testing purposes only. To train the model, we built a dataset of simulated plumes. To complete this dataset,

we used the plume dataset generated by Varon et al. (2021) as a testing only dataset.

We created a dataset of simulated methane plumes with Large Eddy Simulations (LES). The LES procedure allows one to

simulate realistic plumes exposed to wind turbulence. We used the MicroHH model (van Heerwaarden et al., 2017) which80

has already been used for methane plume simulations (Ražnjević et al., 2022). We simulated at a spatial resolution of 30 m

in a 6× 6 km2 domain. We used 61 different wind speeds between 0.5 m s−1 and 6.5 m s−1, and for each wind speed, we

conducted 4 simulations with different temperature profiles, resulting in 244 different simulations. Each simulation lasted 3

hours, the first hour being used as spin-up. In the remaining two hours we sampled one plume every 2 min. Our dataset thus

contains 14640 methane plumes and we used 12444 of them for training and 2196 for validation. Splitting the dataset before85

data augmentation ensured that the network would not see a plume with exactly the same shape during training as during

testing. During the simulation process, all plumes were generated with the same constant emission source rate.

As previously mentioned, to verify that our model can generalize to a diversity of plumes, we also tested it on the simulations

performed in Varon et al. (2021). The dataset of Varon et al. (2021), originally designed for Sentinel-2, was generated with
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WRF-LES (Skamarock et al., 2008). It contains 1200 methane plumes simulated at various wind speeds ranging between90

1.5 m s−1 and 5 m s−1, and at a 25 m horizontal and 15 m vertical resolution over a 9× 9× 2.4 km3 domain. The simulations

were obtained from 5 different wind speeds and sampled with a 30 s time gap. Before testing, the plumes were resampled at a

30 m resolution. We will refer to this dataset as S2Test.

2.3 Source rate scaling

To study the performance of our model with a wide range of source rates, we performed data augmentation by randomly scaling95

all the plumes in the dataset. The plumes in the train set were scaled 10 times between 50 kg h−1 and 33000 kg h−1 while the

plumes in the test set were scaled between 100 kg h−1 and 25000 kg h−1. The range of source rates for the test set needs to be

smaller than the range of source rates for the train set. A neural network avoids predicting a value that is outside the training

range. Therefore, the network will underestimate the source rate close to 33000 kg h−1 and overestimate the source rate close

to 50 kg h−1. This will create a bias while evaluating the estimation error which is avoided by testing in a (realistic) narrower100

range, between 100 kg h−1 and 25000 kg h−1.

It is, indeed, very hard to detect emissions at a source rate of 50 kg h−1 with satellites such as PRISMA or EnMAP (Jacob

et al., 2022; Cusworth et al., 2019). However, because of the threshold effect associated with the training range, it is necessary

to train the network on emission rates as low as possible. If we only considered source rates starting at 1000 kg h−1, it would

not be possible to know if a plume for which we estimate 1000 kg h−1 is not actually at a lower source rate. Training from105

50 kg h−1 up ensures that the plumes that can actually be detected will not suffer from the threshold effect, the detection

threshold for EnMAP being between 100 kg h−1 and 500 kg h−1 depending on the background (Cusworth et al., 2019).

2.4 Simulations temporal sampling

To generate our dataset, we used a time gap of 120 s between two plumes from the simulation, while in the dataset of Varon

et al. (2021), the time gap is only 30 s. One can even find datasets with shorter time gaps, such as the one used by Radman110

et al. (2023), which has a 10 s time gap only. Increasing the time gap between simulated plumes in a dataset reduces their

correlation, allowing them to be considered independent. If we consider plumes taken with a small time gap (less than 30

s), we can observe the same turbulence patterns; thus, they can hardly be considered as different and a fortiori independent

samples in the dataset. We can observe this redundancy in Figure 1, where we show the same plume at different time steps

and for different wind speeds. We can easily notice that after 10 s and for any wind speed, the plume is almost identical to the115

initial image, whether it is in terms of shape or concentration. After 30 s, the shape is still quite similar, but there are some

changes in the distribution of the concentration. This observation is mostly true around the source of the plume. In 30 s, the

new concentration distribution has not yet spread to the tail of the plume. After 60 s, the changes in the distribution of the

concentration have increased and we start to see some noticeable changes at the beginning of the plume tail. This is visible for

the plumes at 1 m s−1 and 3 m s−1. After 120 s, most of the plumes are globally different from their original image. However,120

we still see residuals from the turbulence that were occurring in the initial image. For example, for the plume at 2 m s−1, even
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Table 1. Different test sets of simulated data. The number of train samples and test samples are the numbers before data augmentation. There

is no train sample for S2Test as we use it only for testing.

Datasets Wind range
Temporal

sampling

Number of different

simulations

Number of

train samples

Number of

test samples

MicroL 0.5-6.5 m s−1 120 s 244 12444 2196

MicroS 0.5-6.5 m s−1 10 s 61 37332 6588

S2Test 1-6 m s−1 30 s 30 0 1200

if the distribution of the concentration is different, the overall shape of the plume after 120 s looks similar to the one in the

initial image.

Thus, using small time gaps leads to a low plume variety in the dataset. This can lead to severe network overfit. In addition,

the train set and test set will be strongly correlated, and thus overfitting will be more difficult to notice. To show the overfitting125

effect caused by small time gaps, we generated a second dataset following the methodology of Radman et al. (2023): we

performed one simulation per wind speed and used a time gap of 10 s. We will refer to the dataset with a large time gap as

MicroL (for MicroHH-Large) and to the dataset with a short time gap as MicroS (for MicroHH-Short). The dataset of Varon

et al. (2021) referred to as S2Test will be used only for testing. The parameters for each dataset are summarized in Table 1.

Note that MicroL does not result from subsampling MicroS. Otherwise, we would not be able to show the overfitting when130

working with MicroS, as performing well on MicroS would lead to performing well on MicroL too. Therefore, there is no

plume in common between MicroL and MicroS and the plumes come from different simulations.

3 Methods

3.1 Methane concentration retrieval

In hyperspectral imaging, any object in a scene can be assigned a spectral signature. In the case of methane, this spectral135

signature is the absorption spectrum of the gas. To determine whether an observation contains an excess of methane, it is

therefore natural to look for a deviation in the observation spectrum in the direction of the methane spectral signature. The

amplitude of the observed deviation then provides a measure of the gas concentration. This idea sums up how the matched

filter retrieval works for methane concentration. It is used on many hyperspectral instruments such as AVIRIS (Foote et al.,

2020) and PRISMA (Guanter et al., 2021).140

A standard hypothesis for hyperspectral images is that the background pixels follow a Gaussian multivariate distribu-

tion (Theiler and Wohlberg, 2013). With this assumption, the maximum likelihood estimator of the methane mixing ratio

is given by the matched filter (Huang et al., 2020).
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Figure 1. For different wind speeds a methane plume is displayed at different time steps. The plumes come from the proposed MicroS

dataset. The images correspond to the result of the LES, before it is included in a real EnMAP image.
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Let us denote by KCH4 the diagonal matrix whose diagonal components are the methane absorption coefficient values and

let µ and Σ be respectively the mean vector and the covariance matrix of the background. We define the target vector by145

t =−KCH4 ·µ. (1)

With these notations, the excess methane concentration α corresponding to an observed pixel x is given by the matched filter

formula:

α(x) =
tT Σ−1(x−µ)

tT Σ−1t
. (2)

The parameters µ and Σ are computed with their empirical non-biased estimates. They are calculated across-track, which150

means that we compute a different set of parameters for each detector element in the sensor. This applies for both PRISMA

and EnMAP images.

The matched filter is the optimal detector for an additive target in a Gaussian background. This assumption on the background

is not necessarily true in methane plume detection. Several variations of the matched filter are designed to improve the provided

quantification. Here, we use the MAG1C method proposed by Foote et al. (2020) for methane concentration retrieval. The155

MAG1C method introduces two improvements to the matched filter formulation. The first is a spatial L1 regularization to

take into account the fact that most observations are not part of a plume. The second is the estimation of a different albedo

coefficient for each pixel. The latter is defined by

r(x) =
xT µ

µT µ
. (3)

This albedo coefficient is used to scale the target spectrum. Thus, the target spectrum used in the matched filter for the pixel x160

becomes r(x)t instead of t.

3.2 Integrated Mass Enhancement

The most classical method for the estimation of point source methane emissions is Integrated Mass Enhancement (IME) (Franken-

berg et al., 2016). This method is already widely used for EnMAP and PRISMA images (Roger et al., 2024; Guanter et al.,

2021). The source rate Q is calculated as165

Q =
Ueff · IME · 3600

L
, (4)

where the IME is the total mass of excess methane (in kg) contained in the plume, L is the plume length (in m) and Ueff

(in m s−1) is the effective wind speed. The factor 3600 results from the conversion from kg s−1 to kg h−1. The effective wind

speed Ueff is usually estimated from the wind speed at 10 m altitude U10. The relationship between Ueff and U10 is obtained

by fitting a regression model on simulated data with Large Eddy Simulations (Guanter et al., 2021; Varon et al., 2018). Several170

expressions exist for Ueff with linear or logarithmic models (Guanter et al., 2021; Varon et al., 2018). A model suited for

source rate estimation with PRISMA or EnMAP is (Guanter et al., 2021; Roger et al., 2024)

Ueff = 0.34 ·U10 + 0.44. (5)
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In Equation 4, the IME is obtained from the estimated CH4 concentration in the plume. The length of the plume is usually

calculated by taking the square root of the plume area (Varon et al., 2018). This allows one to deal with the fact that the length175

of the plume is not always properly defined. Indeed, because of turbulence and wind variations, the plume does not necessarily

follow a straight path. However, this implies using a plume mask to compute L. Therefore, the quality of the estimation of Q

will depend on the quality of the mask. A good mask (one that provides a good estimate of Q) is difficult to obtain. The varying

plume shapes and the amount of noise in the images make it difficult to distinguish the contours of the plumes. This means

that two different human operators can label the same plume in very different ways. This can affect not only the quality of the180

estimation of Q, but also the reproducibility of the method.

To obtain U10, a standard practice is to calculate it with an external measurement coming from a data set of wind data at

a global scale such as GEOS-FP (Molod et al., 2012) or the ECMWF-ERA5 dataset (Hersbach et al., 2020). However, these

datasets provide wind data with a low spatial resolution (around 25× 25 km2 for GEOS-FP and 30× 30 km2 for ERA5) and a

low temporal sampling (hourly data). Hence, these datasets are not ideal as wind data sources to characterize CH4 emissions:185

the temporal gap between the emission and the wind data point can be up to 30 minutes and most plumes studied with PRISMA

or EnMAP will not exceed 5 or 6 km.

To compare our method with the IME, we considered two cases. In the first case, we estimate the source rate by using the

effective wind given by Equation 5 obtained by Guanter et al. (2021) with LES simulations. In the second case, we fit our own

effective wind model by using the MicroL dataset. We obtain the following equation for Ueff190

Ueff = 0.17 ·U10 + 0.49. (6)

We will refer to our version of the IME as IME-MicroL.

3.3 Deep learning

To estimate the emission source rate from the methane concentration retrieval image, we use a deep neural network. The use of

a neural network enables source rate estimation without depending on an external data source for wind speed. It also removes195

the variability associated with the manual labeling of the plume which is needed when using methods such as Integrated Mass

Enhancement (Frankenberg et al., 2016).

3.3.1 Models and training

We compared two architectures. Firstly, the EfficientNetV2-B0 (Tan and Le, 2021) model. This is the lightest version of

the EfficientNet models in terms of number of parameters. Those models have already proven their efficiency for source rate200

estimation (Radman et al., 2023). The use of the lightest version allows for a fast training, even on CPU. The second architecture

tested is the ConvNeXt-Tiny model. This is the lightest version of the ConvNext models but it has four times more parameters

than EfficientNetV2-B0. For both models, we changed the last layer for a fully connected layer with one unit to perform the

source rate estimation. For the training, we fine-tuned the models weights pre-trained on ImageNet. We compared the Mean
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Square Error (MSE) loss and the Mean Absolute Percentage Error (MAPE) loss. During training, 15% of the train set was used205

for validation.

3.3.2 Dataset pre-processing

We used the two above described architectures to train several networks. These networks will allow us to compare different

pre-processing for our plumes images such as rotations and shifts of the plumes.

The most common pre-processing consists in augmenting the dataset with random rotations of the plumes and random shifts210

of the source (from 0 to 3 pixels) in any direction. This allows us to work with a dataset as diverse as possible and helps

reproduce real plume images.

However, this pre-processing artificially increases the difficulty of the task. In the context of plume quantification, we already

know that our image contains a methane plume, and we know its position. Rotating the plumes in the dataset means adding

uncertainty to the position of the plume, particularly in the case of plumes with a low source rate. This uncertainty in the215

position of the plume is likely to affect the quality of the source rate estimate. Instead of rotating the plumes, we propose

aligning all the plumes in the same direction. We align all the plumes with the x-axis, so that the plume propagates from left to

right in the image. This alignment step can be performed automatically or manually, as most methane plume detection methods

rely on the intervention of a human annotator.

For the dataset with rotations, the size of each image is 130× 130, covering an area of 3.9× 3.9 km2. The image is made220

so that the source of the plume is located at its center (before the random source shifts). This area is large enough to contain

most of the plumes that are usually detected with PRISMA and EnMAP. If the plume is larger than the cropped image, the part

outside of the frame corresponds to the end of the plume tail. This part is usually very noisy, so very little to no exploitable

information can be obtained from this area. For the dataset with aligned plumes, the size of each image is 100× 100, covering

an area of 3×3 km2. Because all the plumes are now aligned, the source is placed on the left of the image, which explains why225

we can use slightly smaller images and still have an image that contains the whole plume.

4 Experiments and results

To evaluate the results, we use two standard metrics: the Root Mean Square Error (RMSE) and the Mean Absolute Percentage

Error (MAPE). We are going to compare the method presented here with different source rate estimation techniques but also

with the different datasets MicroL, MicroS, and S2Test. The test sets in these datasets contain plumes with source rates starting230

at 100 kg h−1. However, in real-life conditions, it is highly unlikely that plumes with such low source rates will be detected,

as they are below the detection threshold of PRISMA and EnMAP (Jacob et al., 2022; Cusworth et al., 2019). To calculate the

MAPE and RMSE, we will therefore only use plumes with source rates above 500 kg h−1. Plumes with source rates below this

threshold will still be used for visualization purposes to observe the networks’ behavior at very low source rates.
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Table 2. Result comparison of four networks tested on MicroL.

Name RMSE MAPE

EffNet+rotation 1736 12.8

EffNet+align 1421 10.2

CNext+rotation 1551 10.3

CNext+align 1437 9.5

4.1 Architecture and plume orientation235

We start by studying the influence of the network architecture and of the plume orientation. To do so, we compare differ-

ent networks for which we select an architecture between EfficientNetV2-B0 and ConvNeXt-Tiny and a plume orientation

between random rotations and alignement with the x-axis as described in the previous section. This leads to four networks:

EffNet+rotation, EffNet+align, CNext+rotation, CNext+align. These four networks are trained with MSE loss, on the dataset

MicroL.240

In Table 2, we compare the results of EffNet+rotation, EffNet+align, CNext+rotation, CNext+align in terms of RMSE and

MAPE. Overall, the methods with plume alignment outperform the other networks both in RMSE and in MAPE. We can

also observe that, for a fixed pre-processing, the networks based on ConvNeXt seem to perform better than those based on

EfficientNet. Whereas it is clear that CNext+rotation outperforms EffNet+rotation, CNext+align outperforms EffNet+align

only in MAPE. The networks with plume alignment have a very close RMSE with a gap of only 16 kg h−1, which is not245

statistically significant. However, a gap of 0.7 in MAPE shows a real difference in performance. Indeed, the low source rates

have very little impact on the RMSE but can have a high impact on the MAPE. A lower value in MAPE but not in RMSE

therefore means that the estimation is improved for low source rates.

We can observe the evolution of the MAPE with respect to the source rate in Figure 2. We see that the four tested networks

have very similar performance levels for high source rates, from 4000 kg h−1 upwards. Above 4000 kg h−1, the MAPE hardly250

decreases at all, remaining around 10% for all networks. Indeed, at high source rates, the methane concentration looks like the

ground truth image because the noise is negligible with respect to the plume concentration. Therefore, for the network, there is

no difference (in terms of additional information) between an image with a plume at 10000 kg h−1 or at 20000 kg h−1. Thus,

the networks differ only in their performance at medium- and low-source rates, with the gaps between them narrowing as the

source rate increases. In particular, we can see that CNext+align is indeed outperforming EffNet+align for low source rates.255

Between 100 kg h−1 and 200 kg h−1, the MAPE of CNext+align is at least half the MAPE of any other network. However,

even if we dismiss the case of source rates below 500 kg h−1, CNext+align still outperforms the other methods. Since MAPE

is a better representation of the networks performance over the entire range of source rates, from now on, we will focus only

on the ConvNextTiny architecture.
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Figure 2. Evolution of the MAPE with respect to the source rate for different architectures and plume orientations. The networks are trained

and tested on the MicroL dataset.

4.2 Loss260

As we saw in Figure 2, the differences in performance between the methods lie in the 0-4000 kg h−1 range. However, when

training with the MSE loss, this is the range that has the least weight in the loss. To improve performance in the 0-4000 kg h−1

range, we train the network directly with the MAPE loss, which gives more weight to low source rates than the MSE loss. This

is also possible because performance in the 4000-25000 kg h−1 range is stable for all the used networks, so we can expect the

same result when changing the loss. In Figure 3, we observe the influence of the loss. We compared a network CNext+RMSE265

trained with the RMSE loss on aligned plumes with CNext+MAPE, the same network but trained with the MAPE loss.

As expected, CNext+MAPE outperforms CNext+RMSE in terms of MAPE. We can see a significant improvement in the

0-10000 kg h−1 range. Note that changing the loss affects not only plumes with small source rates but also those with higher

rates. Moreover, it also outperforms CNext+RMSE in terms of RMSE with a lower RMSE in the 0-10000 kg h−1 range.

Beyond 10000 kg h−1, the two networks have similar performance.270

The network CNext+MAPE trained with aligned plume on MicroL is the best version of our different networks and we name

it MetFluxNet.

4.3 Uncertainty estimation

The simplest way to estimate the uncertainty on the source rate estimate provided by the neural network is to compute the

empirical standard deviation of the estimation. To compute it for a given prediction, we consider a sample of the true source275

rate distribution corresponding to this prediction and we compute the standard deviation of this distribution with its usual non

biased empirical estimate. The sample of the true source rate distribution is obtained from the test set of MicroL. Under the
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Figure 3. Evolution of the MAPE and the RMSE with respect to the source rate for networks trained with the MAPE loss and the RMSE

loss. The networks are trained and tested on the MicroL dataset with aligned plumes.

assumption that the source rate distribution corresponding to a prediction made by the network follows locally a Gaussian

distribution, we can then obtain a confidence interval on the prediction.

Under the same assumption, another way to obtain a confidence interval is to train the network for a probabilistic regres-280

sion (Nix and Weigend, 1994). For a given plume P , let us denote by Q its emission source rate. Then, the prediction made

by the network for P follows a Gaussian distribution N (Q̂,σ), where Q̂ is an estimator of Q. When using a probabilistic

regression, we want to estimate both Q̂, which will be the predicted source rate, and σ which will be the standard deviation of

the estimation. This standard deviation yields confidence intervals.

Predicting the standard deviation requires a small change in the network architecture. The previous networks used a fully285

connected layer with one unit as the last layer to perform the source rate estimation. To output both the predicted source rate

and the standard deviation, we add in parallel of this last layer a fully connected layer with one unit set to the power of two.

Squaring the layer ensures that the output will be positive. Therefore, we consider that the output of this second layer will be

the variance of the distribution, i.e. σ2.

To ensure that σ is an estimate of the standard deviation, we use the Negative Log Likelihood (NLL) as loss. Indeed, if290

(Q̂,σ) minimize the NLL, then (Q̂,σ) are the maximum likelihood estimator for the parameters of the output distribution of

the network. The NLL is defined by

NLL(Q,Q̂,σ) =
1
2


log2πσ2 +

∥∥∥Q̂−Q
∥∥∥

2

σ2


 . (7)
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Figure 4. Evolution of the standard deviation computed empirically or with a probabilistic regression with respect to the predicted source

rate. The networks are trained and tested on the MicroL dataset with aligned plumes.

We obtain similar performance when comparing CNext+MAPE with CNext+NLL. The CNext+MAPE has a RMSE of

1388 kg h−1 and a MAPE of 8.3% whereas CNext+NLL has a RMSE of 1369 kg h−1 and a MAPE of 8.3%. With CNext+NLL295

we are not only comparing the predictions, but also the standard deviations.

In Figure 4, we can compare the empirical standard deviation computed with the output of CNext+MAPE, denoted by σemp,

to the network estimated standard deviation computed with CNext+NLL, denoted by σNLL. Note that the plot depends on the

predicted source rate and not on the true source rate because we look at the distribution of the network output. We can notice

that σNLL and σemp have the same behavior. The proximity between the values of σemp and σNLL is due to the fact that the300

empirical standard deviation is the maximum likelihood estimator of the standard deviation for a Gaussian distribution. Since

σNLL is an approximation of the maximum likelihood estimator of the standard deviation, we deduce that σNLL should be

close to σemp. From now on, we name ProbMetFluxNet the network CNext+NLL.

4.4 Influence of the background

The networks estimating a plume emission source rate that we presented use all the information in the image to compute305

a prediction, including background information. However, the background can contain false positives, typically pixels not

belonging to the plume that could be considered as plume pixels because of their high retrieved concentration. When estimating

the source rate, we first want to remove those false positives before giving the image to the network. Removing a part of

the background pixels will change the overall distribution of the background. In particular, the resulting distribution will be

different from the ones the network has been used to see in the training set. This might lead to errors in the source rate310

estimation.
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Figure 5. Two images of the same simulated plume. The left one is the result of the methane concentration retrieval. On the right one, we

removed background pixels in the top and the bottom of the image. The true source rate corresponding to those plumes is 2192 kg h−1. The

scale is in particles per million (ppm).

In Figure 5, we observe two images of the same simulated plume. The source rate corresponding to this plume is 2192 kg h−1.

In the left image, we have the original methane retrieval image. On the right image, we removed the top and bottom edges which

contained only background pixels. Even if these images do not include false positives, this example shows how a change in the

background far from the plume can impact the source estimation.315

We can see that although the two plumes are identical, we have two significantly different source rate predictions with an

increase of almost 10% in the predicted source rate when removing a part of the background pixels. Moreover, this increase in

the predicted source rate widens the gap between the prediction and the ground truth.

To reduce the impact of the background distribution, we trained a version of our network with different parts of the back-

ground removed. This aims at reproducing the background distribution we would obtain when removing false positives in real320

plume images. To create those sparse images to train the network, we draw random bounding boxes that include the entire

plume and we remove the pixels outside of it. This avoids mistakenly removing plume pixels. In Figure 5, the right-hand image

corresponds to the bounding box applied to the left-hand plume. We name MicroL-sparse the MicroL dataset with the partial

background removal. In the same way, we name MetFluxNet-sparse the version of MetFluxNet trained on MicroL-sparse.

In Table 3, we compare MetFluxNet and MetFluxNet-sparse on MicroL and MicroL-sparse. As it could be expected, Met-325

FluxNet obtains the best performance on MicroL and MetFluxNet-sparse obtains the best performance on MicroL-sparse. In

particular, the performance of MetFluxNet on MicroL are similar to the performance of MetFluxNet-sparse on MicroL-sparse.
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Table 3. Result comparison for MetFluxNet and MetFluxNet-sparse. The networks are trained respectively on MicroL and MicroL-sparse.

They are both trained with the MAPE loss.

Network RMSE (MicroL) RMSE (MicroL-sparse) MAPE (MicroL) MAPE (MicroL-sparse)

MetFluxNet 1388 1728 8.3 10.3

MetFluxNet-sparse 1445 1374 8.9 8.3

Table 4. Result of MetFluxNet on different backgrounds. The RMSE values are in kg h−1.

Area RMSE MAPE

North America 1411 8.5

Middle East 1372 8.3

North Africa 1382 8.1

Hence, removing background pixels when there is no false positive to remove does not improve the results, but it does not

decrease them either (the gap between a RMSE of 1388 kg h−1 and 1374 kg h−1 is not statistically significant). However,

the results of MetFluxNet-sparse are much better on MicroL than the results of MetFluxNet on MicroL-sparse. This is be-330

cause MetFluxNet-sparse is trained on images with various degrees of sparsity, therefore it generalizes better when there is no

added sparsity in the images. On the other hand, MetFluxNet has the advantage of being able to be used without any manual

intervention on the background.

Another way to look at the influence of the background is to compare the network performance on several different back-

grounds. In Table 4, we compare the results of MetFluxNet in three locations: North America, Middle East and North Africa.335

We obtain very similar results for the three locations, in terms of both RMSE and MAPE. We notice that the RMSE and MAPE

are slightly higher for North America than for the other two areas. This might be due to the more desertic background we can

have in the Middle East and North Africa which usually are less noisy. Moreover, the heterogeneous backgrounds we can find

in North America make the estimation more difficult (Roger et al., 2024). The increase in RMSE between North America and

the other locations is about 35 kg h−1 which represents only a 2.5% increase compared to the results in Middle East and North340

Africa.

4.5 Tests on real data

To validate predictions of our networks, we want to test it on images of real plumes. However, without ground truth, which is

generally not available, it is difficult to measure the quality of our prediction. Therefore, we will work with methane plumes

observed after the controlled methane releases carried out by Sherwin et al. (2023b) and Sherwin et al. (2023a). In Sherwin345

et al. (2023b) and Sherwin et al. (2023a), researchers conducted single-blind controlled methane release experiments to evaluate
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Table 5. Source rate estimation for plumes detected by PRISMA and EnMAP in the controlled releases experiment of (Sherwin et al.,

2023b, a). The source rate values are in kg h−1.

Network 16/10/2021 21/10/2021 27/10/2021 16/11/2022

Best from (Sherwin et al., 2023b, a) 3379± 1860 4781± 1854 5051± 2749 1818± 1023

S2MetNet (Radman et al., 2023) 3304± 990 5945± 1416 4666± 1211 1582± 659

MetFluxNet (ours) 2735± 798 4695±985 3512±855 1130±459

ProbMetFluxNet (ours) 2888± 547 4994± 961 4175± 812 1255± 270

MetFluxNet-sparse (ours) 2569±728 5134± 1026 3691± 1048 1245± 493

ProbMetFluxNet-sparse (ours) 3281± 576 5337± 932 4406± 781 1241± 242

Ground truth 2355 4473 3433 1096

the performance of satellite-based methane detection and quantification methods. They released methane plumes in Arizona

between October and November 2021 and October and November 2022. These releases occurred during overpasses of several

satellites with methane detection capabilities, including PRISMA and EnMAP. In 2021, three methane plumes were released

during PRISMA overpasses and, in 2022, one methane plume was released during EnMAP overpasses. Hence, we will test our350

networks on these four plumes for which we have a ground truth.

In Figure 6, we can observe the four plumes detected by PRISMA. The plumes have been rotated to be aligned with the x-

axis to comply with the alignement pre-processing required for the different versions of MetFluxNet. The red bounding boxes

are used for the sparse versions of the networks, the non-sparse networks used the whole image. In image (d), no pixels needed

to be removed, therefore the bounding box includes the whole image.355

In Table 5, we compare the predictions made by MetFluxNet, ProbMetFluxNet and their sparse versions to state-of-the-

art methods. Those predictions are provided with 95% confidence intervals. The confidence interval is computed empirically

for MetFluxNet and MetFluxNet-sparse. For ProbMetFluxNet and ProbMetFluxNet-sparse, it is computed with the standard

deviation estimated by the network. We reproduced the results of S2MetNet (Radman et al., 2023) by training a version of

the network on MicroL, the corresponding confidence interval is computed empirically. The work of Sherwin et al. (2023b)360

and Sherwin et al. (2023a) does not introduce any new methods but gathers the results of different research teams. Therefore,

for each plume, we selected the best result obtained among all different teams. To select the best result for a given plume,

we considered all the proposed 95% confidence intervals that contain the true source rate and we select the one for which the

prediction is the closest to the true flux rate. For the four plumes considered here, the best results have been produced with the

Integrated Mass Enhancement method (Varon et al., 2018). The 95% confidence intervals are obtained from the data and code365

of Sherwin et al. (2023b) and Sherwin et al. (2023a).

For the networks MetFluxNet,ProbMetFluxNet and MetFluxNet-sparse, the ground truth is within the 95% confidence in-

terval for the four plumes. In particular, MetFluxNet makes the best prediction in three cases out of four with predictions

very close to the exact value. This shows that false positives, as the ones we can see in Figure 6(b) and (c), do not prevent a
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Figure 6. Retrieved methane concentration for four methane plumes detected by PRISMA and EnMAP in the methane controlled release

experiment of (Sherwin et al., 2023b, a). Pixels outside of the red bounding boxes are removed when using the sparse versions of the

networks. The bounding boxes are manually drawn to exclude pixels with high values which do not belong in the plume. The scale is in

particles per million (ppm).

good source rate estimation. A possible explanation is the plume alignment: as the position of the plume is fixed in the image,370

pixels far from it should have a small weight in the final source rate computation. We showed in Figure 5 that variations in the
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Table 6. Comparison of different source rate estimation methods. The results are in kg h−1 for the RMSE and in percent for the MAPE.

Method RMSE (MicroL) RMSE (S2Test) MAPE (MicroL) MAPE (S2Test)

IME (Guanter et al., 2021) 6613 3437 53.3 30.4

IME-MicroL 1791 3250 14.1 19.0

S2MetNet(Radman et al., 2023) 1533 2280 9.7 14.0

MetFluxNet (ours) 1388 2255 8.3 12.7

ProbMetFluxNet (ours) 1369 2377 8.3 13.4

background could lead to significant prediction changes. However, when applying bounding boxes, we modify the value of a

high number of pixels whereas the brightest false positives visible in Figure 6 represent only a few dozen pixels.

Overall, the results of MetFluxNet are closer to the ground truth than those presented in (Sherwin et al., 2023b, a) for the

PRISMA and EnMAP plumes. Moreover, our confidence intervals are also smaller than those of (Sherwin et al., 2023b, a).375

Hence, our method has higher precision. This shows that MetFluxNet works not only on simulations, but also for plumes under

real conditions.

4.6 Comparison with state-of-the-art methods

To show the improvement brought by MetFluxNet, we compare it with popular methods for source rate estimation of point

source methane emissions detected with satellite imagery such as the IME and S2MetNet (Radman et al., 2023). S2MetNet is380

a deep learning model based on the EfficientNetV2-L architecture which is then fine-tuned on a simulated dataset generated

with LES. Here, we reproduce a version of S2MetNet on MicroL to compare it with MetFluxNet. The methods described here

are tested on the datasets MicroL and S2Test.

The results of the above methods are presented in Table 6. First, we can observe that both versions of the IME are widely

outperformed by deep learning methods. When comparing the deep learning methods, MetFluxNet has a lower RMSE and385

MAPE than S2MetNet on both datasets. On MicroL, the RMSE of MetFluxNet is about 150 kg h−1 lower and the MAPE is

more than 1% lower. On S2Test, the RMSE of MetFluxNet and S2MetNet are very close to each other, but in terms of MAPE

the gap is the same as on MicroL. This means that MetFluxNet significantly outperforms S2MetNet for the low source rates.

Moreover, MetFluxNet relies on a much lighter model than S2MetNet. The ConvNeXtTiny architecture has only 28.6 million

parameters whereas EfficientNetV2L has 119 million parameters. Hence, MetFluxNet is easier to train than S2MetNet and also390

performs better.

When comparing the results of MetFluxNet on MicroL and S2Test, we can notice that MetFluxNet performances are worse

on S2Test than on MicroL. The RMSE is about 850 kg h−1 higher and the MAPE is 4.4% higher. This can be explained by the

fact that the dataset of Varon et al. (2021) comes from a different simulation setup and is therefore farther from the train set
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than the data from our simulations. This difference in RMSE and MAPE does not mean that MetFLuxNet cannot generalize395

to different plumes. As we saw in the previous section, it estimated accurately the source rates for the real plumes we tested.

Moreover, our method performs better on S2Test than S2MetNet or the IME, this makes MetFluxNet a method well suited for

real applications.

4.7 Overfitting when training on MicroS

To show that training with MicroS necessarily leads to overfitting, we compare a network trained on MicroS to a network trained400

on MicroL. We name MicroSnet and MicroLnet the networks trained on MicroS and MicroL respectively. Both networks are

trained without any plume mask, on aligned plumes and with MSE loss.

In Figure 7, we can compare the results of MicroLnet and MicroSnet on MicroL, MicroS and S2Test. MicroLnet gives

results of the same order of magnitude on MicroL and MicroS. MicroSnet outperforms MicroLnet on MicroS, which was to be

expected, but has a higher RMSE and MAPE than MicroLnet on MicroL. In particular, the RMSE of MicroSnet almost triples405

between MicroS and MicroL.

MicroSnet performs well on MicroS because the train set and the test set are too similar. As we saw in Figure 1, with a

10 s time step, the test set contains plumes that are practically identical to those found in the train set. Even if MicroSnet is

trained on more samples than MicroSnet (according to Table 1), it generalizes poorly on MicroL because the training samples

are too similar. On the other hand, MicroLnet has RMSE and MAPE of the same order of magnitude on MicroL and MicroS,410

which shows that the network did not overfit. On S2Test, MicroSnet slightly outperforms MicroLnet but the performance of

both networks are way lower than those on their respective test set.

Thus, MicroSnet clearly overfits the MicroS dataset. It performs very well on the test set of MicroS but the performance on

this dataset does not correctly represent the ability to quantify source rate under real conditions. Even if the RMSE and MAPE

of MicroSnet are of the same order of magnitude as those of MicroLnet when tested on MicroL and S2Test, it is necessary to415

have a dataset additional to MicroS, to be able to properly evaluate the results of MicroSnet. Therefore, we can simply work

with MicroL, as working with MicroS would require using another dataset anyway.

5 Conclusions

We introduced MetFluxNet, a new deep learning network for source rate estimation of point source methane emissions detected

with the PRISMA and EnMAP satellites. MetFluxNet was trained on MicroL which is a new synthetic plume dataset we420

generated to train deep learning methods. The use of two different source rate ranges for the train set and the test set of MicroL

prevents border effects in the extremes of the testing range. Moreover, the large time gaps chosen for the temporal sampling of

the simulated plumes prevents overfit during training.

MetFluxNet can detect a wide range of emissions from 500 kg h−1 to 25000 kg h−1 and without any wind information or

plume labeling. It is based on a ConvNeXtTiny architecture and on an alignment of the plume as pre-processing. We showed425

that this pre-processing improves the quality of the estimation, in particular in the case of low source rates. The plume alignment

19

https://doi.org/10.5194/egusphere-2025-1075
Preprint. Discussion started: 2 April 2025
c© Author(s) 2025. CC BY 4.0 License.



0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

35000

Es
tim

at
ed

 Q

(a) MicroLnet on MicroL
RMSE = 1437 kg h 1

MAPE = 9.5%
1:1 line

0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

35000

Es
tim

at
ed

 Q

(b) MicroSnet on MicroL
RMSE = 1677 kg h 1

MAPE = 10.1%
1:1 line

0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

35000

Es
tim

at
ed

 Q

(c) MicroLnet on MicroS
RMSE = 1698 kg h 1

MAPE = 11.3%
1:1 line

0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

Es
tim

at
ed

 Q

(d) MicroSnet on MicroS
RMSE = 610 kg h 1

MAPE = 5.0%
1:1 line

0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

35000

Es
tim

at
ed

 Q

(e) MicroLnet on S2Test
RMSE = 2492 kg h 1

MAPE = 15.0%
1:1 line

0 5000 10000 15000 20000 25000
True flux rate Q

0

5000

10000

15000

20000

25000

30000

35000

Es
tim

at
ed

 Q

(f) MicroSnet on S2Test
RMSE = 2367 kg h 1

MAPE = 14.3%
1:1 line

Figure 7. Results of the networks MicroLnet and MicroSnet on MicroL, MicroS and S2Test. Each line corresponds to a dataset and each

column to a network.
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also helps to obtain good results even with small network architectures. We showed that MetFluxNet outperforms larger

architectures such as EfficientNetV2L thanks to the plume alignment. MetFluxNet achieved a 8.3% in MAPE on our simulated

dataset MicroL. It outperforms preexisting methods such as the IME or S2MetNet. We also validated MetFluxNet predictions

on real plumes observed in the context of controlled methane release experiments. MetFLuxNet successfully provided 95%430

confidence intervals for the real plumes we tested.

We also tested variations of the MetFluxNet. We tested ProbMetFluxNet which was designed to provide accurate standard

deviation estimations for our predictions. It allowed us to validate the empirical standard deviation estimates computed with the

results of MetFluxNet. We also created MetFluxNet-sparse, the purpose of this network was to estimate the source rate after

manual false positives removal. MetFluxNet-sparse obtained performances similar to MetFluxNet which shows that a manual435

intervention is not needed when working with MetFluxNet. The method presented here was designed for methane plumes, but

we aim at generalizing it for other gas or aerosol plumes.
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at http://prisma.asi.it/missionselect/. The MicroL dataset is available upon request.

Author contributions. EO generated the simulated datasets, designed the method, performed the experiments and wrote the manuscript. TE440

contributed to setting up the simulations, designing the method and reviewing the manuscript. GF and RM supervised the project, helped

design the method and reviewed the manuscript. EM and JM helped design the method and reviewed the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors thank the CEA for funding this research. The authors also thank Daniel Varon for sharing its simulation

data. This work was performed using HPC resources from GENCI–IDRIS (grant AD011012453R3).445

21

https://doi.org/10.5194/egusphere-2025-1075
Preprint. Discussion started: 2 April 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Bruno, J. H., Jervis, D., Varon, D. J., and Jacob, D. J.: U-Plume: automated algorithm for plume detection and source quantification by

satellite point-source imagers, Atmospheric Measurement Techniques, 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, 2024.

Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A.,

Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T., Giardino, C., and Colombo, R.: The450

PRISMA imaging spectroscopy mission: overview and first performance analysis, Remote Sensing of Environment, 262, 112 499,

https://doi.org/10.1016/j.rse.2021.112499, 2021.

Cusworth, D., Jacob, D., Varon, D., Miller, C., Liu, X., Chance, K., Thorpe, A., Duren, R., Miller, C., Thompson, D., Frankenberg, C.,

Guanter, L., and Randles, C.: Potential of next-generation imaging spectrometers to detect and quantify methane point sources from

space, Atmospheric Measurement Techniques, 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019, 2019.455

Ehret, T., Truchis, A. D., Mazzolini, M., Morel, J.-M., d’Aspremont, A., Lauvaux, T., Duren, R., Cusworth, D., and Facciolo, G.: Global

Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery, CoRR, abs/2110.11832, http://arxiv.

org/abs/2110.11832, 2021.

Foote, M. D., Dennison, P. E., Thorpe, A. K., Thompson, D. R., Jongaramrungruang, S., Frankenberg, C., and Joshi, S. C.: Fast and Accurate

Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior, IEEE Transactions on Geoscience and Remote460

Sensing, 58, 6480–6492, https://doi.org/10.1109/tgrs.2020.2976888, 2020.

Frankenberg, C., Platt, U., and Wagner, T.: Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases:

Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT, Atmospheric Chemistry and

Physics, 5, 9–22, https://doi.org/10.5194/acp-5-9-2005, 2005.

Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K.,465

Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. O.: Airborne methane remote measurements re-

veal heavy-tail flux distribution in Four Corners region, Proceedings of the National Academy of Sciences, 113, 9734–9739,

https://doi.org/10.1073/pnas.1605617113, 2016.

Funk, C., Theiler, J., Roberts, D., and Borel, C.: Clustering to Improve Matched Filter Detection of Weak Gas Plumes in Hyperspectral

Thermal Imagery, Geoscience and Remote Sensing, IEEE Transactions on, 39, 1410 – 1420, https://doi.org/10.1109/36.934073, 2001.470

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C.,

Fischer, S., Schrader, S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Mühle, H., Müller, R., Habermeyer, M., Ohndorf, A., Hill,

J., Buddenbaum, H., Hostert, P., Van der Linden, S., Leitão, P. J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., Mauser, W., Hank, T.,

Locherer, M., Rast, M., Staenz, K., and Sang, B.: The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation, Remote

Sensing, 7, 8830–8857, https://doi.org/10.3390/rs70708830, 2015.475

Guanter, L., Irakulis-Loitxate, I., Gorroño, J., Sánchez-García, E., Cusworth, D. H., Varon, D. J., Cogliati, S., and Colombo, R.: Map-

ping methane point emissions with the PRISMA spaceborne imaging spectrometer, Remote Sensing of Environment, 265, 112 671,

https://doi.org/https://doi.org/10.1016/j.rse.2021.112671, 2021.

Hersbach, H., Bell, B., et al.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, 2020.480

22

https://doi.org/10.5194/egusphere-2025-1075
Preprint. Discussion started: 2 April 2025
c© Author(s) 2025. CC BY 4.0 License.



Huang, Y., Natraj, V., Zeng, Z.-C., Kopparla, P., and Yung, Y. L.: Quantifying the impact of aerosol scattering on the retrieval of methane

from airborne remote sensing measurements, Atmospheric Measurement Techniques, 13, 6755–6769, https://doi.org/10.5194/amt-13-

6755-2020, 2020.

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., and Frankenberg, C.: Satellite

observations of atmospheric methane and their value for quantifying methane emissions, Atmospheric Chemistry and Physics, 16, 14 371–485

14 396, https://doi.org/10.5194/acp-16-14371-2016, 2016.

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott,

L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane emissions from the global scale

down to point sources using satellite observations of atmospheric methane, Atmospheric Chemistry and Physics, 22, 9617–9646,

https://doi.org/10.5194/acp-22-9617-2022, 2022.490

Jervis, D., McKeever, J., Durak, B. O. A., Sloan, J. J., Gains, D., Varon, D. J., Ramier, A., Strupler, M., and Tarrant, E.: The GHGSat-D

imaging spectrometer, Atmospheric Measurement Techniques, 14, 2127–2140, https://doi.org/10.5194/amt-14-2127-2021, 2021.

Jongaramrungruang, S.: MethaNet - an AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume

imagery, in: Climate Change AI, Climate Change AI, https://www.climatechange.ai/papers/icml2021/78, 2021.

Jongaramrungruang, S., Frankenberg, C., Matheou, G., Thorpe, A. K., Thompson, D. R., Kuai, L., and Duren, R. M.: Towards accurate495

methane point-source quantification from high-resolution 2-D plume imagery, Atmospheric Measurement Techniques, 12, 6667–6681,

https://doi.org/10.5194/amt-12-6667-2019, publisher: Copernicus GmbH, 2019.

Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., and Eichmann, A.: The GEOS-5 Atmospheric General Circulation Model:

Mean Climate and Development from MERRA to Fortuna, NASA Technical Reports, https://ntrs.nasa.gov/citations/20120011790, 2012.

Nix, D. and Weigend, A.: Estimating the mean and variance of the target probability distribution, in: Proceedings of 1994 IEEE International500

Conference on Neural Networks (ICNN’94), vol. 1, pp. 55–60 vol.1, https://doi.org/10.1109/ICNN.1994.374138, 1994.

Radman, A., Mahdianpari, M., Varon, D. J., and Mohammadimanesh, F.: S2MetNet: A novel dataset and deep learning bench-

mark for methane point source quantification using Sentinel-2 satellite imagery, Remote Sensing of Environment, 295, 113 708,

https://doi.org/https://doi.org/10.1016/j.rse.2023.113708, 2023.
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